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A B S T R A C T

Background: With the development of medical imaging and processing tools, accurate diagnosis of diseases has
been made possible by intelligent systems. Owing to the remarkable ability of support vector machines (SVMs) for
diseases diagnosis, extensive research has been conducted using the SVM algorithm for the classification of
Alzheimer's disease (AD) and mild cognitive impairment (MCI).
Objectives: In this study, we applied an automated method to classify patients with AD and MCI and healthy
control (HC) subjects based on the diffusion tensor imaging (DTI) features in the superficial white matter (SWM).
Participants: For this purpose, DTI data were downloaded from the Alzheimer's Disease Neuroimaging Initiative
(ADNI). This method employed DTI data from 72 subjects: 24 subjects as HC, 24 subjects with MCI, and 24
subjects with AD.
Measure: ments: DTI processing was performed using DSI Studio software and all machine learning analyses were
performed using MATLAB software.
Results: The linear kernel of SVM was the best classifier, with an accuracy of 95.8% between the AD and HC
groups, followed by the quadratic kernel of SVM with an accuracy of 83.3% between the MCI and HC groups and
the Gaussian kernel of SVM with an accuracy of 83.3% between the AD and MCI groups.
Conclusions: Given the importance of diagnosing AD and MCI as well as the role of superficial white matter in the
diagnosis of neurodegenerative diseases, in this study, the features of different DTI methods of the SWM are
discussed, which could be a useful tool to assist in the diagnosis of AD and MCI.
1. Introduction

Owing to the increase in the aging population, accurate and effective
detection of Alzheimer's disease (AD) has become an important issue in
the society [1]. Mild cognitive impairment (MCI) is a condition between
normal aging-related cognitive decline and the more severe decline of
dementia. Since there is no specific cure for MCI and there is a high risk of
its progression to dementia, the diagnosis and prevention of the disease is
very important [2].
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Figure 1. Steps to extract the parameters from the DTI data.
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Brain imaging techniques are widely considered to have the potential
for the diagnosis of brain disease. Using these techniques, problems in the
human brain can be identified, without the need for invasive neurosur-
gery. Currently, several accepted safe imaging techniques are being used
in research centers and hospitals around the world [6]. Diffusion tensor
imaging (DTI) is a novel MRI-based neuroimaging technique that allows
the assessment of neuronal fiber tract integrity [7].

DTI data reconstruction can be divided into two categories: model-
free and model-based methods. Model-based methods such as DTI
reconstruction assume that the shape of water diffusion follows a 3D
Gaussian pattern, but there is no assumption on the distribution in the
model-free method such as the q-space diffeomorphic reconstruction
(QSDR) method. The QSDR method reconstructs data in the Montreal
Neurological Institute (MNI) space [8]. DSI Studio software (www.dsi-s
tudio.labsolver.org) supports both model-based and model-free recon-
struction methods.

Different measurements are derived from the DTI reconstruction
method including mean diffusivity (MD), fractional anisotropy (FA),
axial diffusivity (AxD) and radial diffusivity (RD). Density-based mea-
surements derived from the QSDR reconstruction method include
quantitative anisotropy (QA), the isotropic value (ISO), restricted diffu-
sion imaging (RDI), and so on.

QA is a metric to quantify the spin population in a specific direction
and resolved the fiber population (specifically crossing fibers). The
normalized QA (nQA) scale is calculated by normalizing the maximum
QA value to one so that QA may be more comparable across the subject
[9].

RDI is a method to quantify the density of restricted diffusion with
respect to the diffusion displacement range (e.g. 10 microns) [10].
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The ability to estimate the main direction of diffusion using the
tensor has also yielded the tractography technique, which has been
applied to calculate the connectivity matrix and network measures
[11].

The brain is represented as a complex network consisting of neurons
and brain regions that are structurally and functionally related. A brain
network (or graph) consists of nodes (representing neurons or brain re-
gions) connected by lines (connectivity between brain regions) [12].

Network science can help in reducing the analytical brain architec-
ture complexity and understanding brain connectivity patterns and can
provide information about clinical disorders [13].

Network measurements include assortativity, efficiency, PageRank,
betweenness, small-world network, and so on; they are used to better
understand the structure and function of the human brain as a network
[14].

Only a few studies have used different analysis approaches such as
region of interest (ROI), tractography, and connectivity and network in
both DTI and QSDR reconstruction. We applied the SVM technique based
on features extracted from the superficial white matter by the above-
mentioned analysis methods for the automated binary detection of AD
and MCI, AD and HC, and MCI and HC.

2. Materials and methods

The data presented in this article is extracted from a M.Sc. thesis and
was reviewed and approved by the Ethical Committee of Mashhad Uni-
versity of Medical Sciences (Ethical number:
IR.MUMS.MEDICAL.REC.1397.320).

The steps are as follows:
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Figure 2. Overview of the division of the SWM of the brain into the frontal (green), insular (orange), limbic (purple), parietal (pink), temporal (blue), and occipital
(yellow) lobes: a) 3D axial view and b) 3D sagittal view.
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2.1. Data acquisition

Data of the 72 participants of the three groups were downloaded from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(http://www.loni.ucla.edu/ADNI/). Subjects of this study including
subjects from the AD (n¼ 24), MCI (n¼ 24), and control (n¼ 24) groups
were recruited from the ADNI2 project.

A whole-brain DTI of the subjects were generated from the ADNI2
project with the following scanning parameters: Manufacturer ¼ GE
MEDICAL SYSTEMS; Matrix X ¼ 256.0 pixels; Matrix Y ¼ 256.0 pixels;
Matrix Z ¼ 2714.0; Pixel Size X ¼ 1.4 mm; Pixel Size Y ¼ 1.4 mm; Pulse
Sequence ¼ EP/SE; repetition time (TR) of 13000 ms, echo time (TE) of
68.3 ms, flip angle of 90�, field strength of 3.0, slice thickness of 2.7 mm,
41 non-collinear directions with a b-value of 1000 s/mm2, and 5 images
with no diffusion weighting. In addition to the images, clinical and
neuropsychological data of subjects were also downloaded.

2.2. DTI processing

For each raw data, the following main steps were performed to extract
the features of the DTI techniques in the SWM (are shown in Figure 1). All
these processes were performed using DSI Studio software (developed by
Fang-Cheng Yeh from the Advanced Biomedical MRI Lab, National
Taiwan University Hospital, Taiwan, supported by Fiber Tractography
Lab, University of Pittsburgh, and made available at http://dsi-st
udio.labsolver.org/Download/).

2.2.1. Preprocessing and reconstruction step
Before DTI parameter measurement, correction of head motion and

eddy-current and skull stripping were done. For skull stripping and
filtering the background region, we used the masks provided by DSI-
Studio. Then in the next step, we used two different reconstruction
methods include model base (DTI) and free model (QSDR) option in DSI
Studio; with two different attitudes to process the diffusion images.

2.2.2. ROI approach
After the reconstruction step, different DTI parameters were obtained

from ROI, tractography and connectivity, and network methods. The ROI
is the identity for a particular purpose, the SWM region in the current
study. The mask (in the MNI space) of this region was obtained from a
similar study by Arash Nazeri et al [15, 16].

According to the division of brain regions in the Terminologia Ana-
tomica 1998 [17] and Terminologia Neuroanatomica 2017 (FIPAT.
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Terminologia Neuroanatomica. FIPAT.library.dal.ca. Federative Inter-
national Programme for Anatomical Terminology, February 2017), we
divided the SWM region into 12 anatomical regions including frontal,
parietal, temporal, occipital, limbic, and insular lobes (on each side) by
the Talairach Atlas [18] (Figure 2). These regions were confirmed by two
experienced radiologists. Finally, we added sub-regions SWM atlas for
better and easier access to DSI-Studio software atlases. In total, 12 SWM
regions and average DTI and QSDR values were calculated for each
region.

2.2.3. Tractography approach
In order to extract the tractography parameters, FA and QA indexes

were used for DTI and QSDR reconstruction to determine the fiber
tracking threshold, respectively. Initially, SWM regions (as ROI) were
placed and tractography was performed separately from the regions. The
tractography of each SWM regions was performed with 100000 seeds,
randomly generated at the subvoxel positions, and the seeds were placed
across all the SWM regions, with a step size of 0 (0.5 voxel to 1.5 voxel
distance) and a smoothing value of 1. The tracking from the primary fiber
of a seeding point was set to streamline (Euler), and the direction
interpolation was set to trilinear. The fiber length range was set between
30 and 300 mm.

2.2.4. Connectivity and network analysis
After performing tractography, the structural connectivity between

the brain SWM regions and the brain network measures was obtained by
the QSDR reconstruction method. To do this, the "Connectivity matrix"
option was used to extract the connectivity and network parameters. So
that after performing a tractography of the whole brain, interconnection
measurements between the regions of the SWM were evaluated based on
the count of connections. Also, the measured information from the
network (such as efficiency, assortativity, betweenness, etc.) was
extracted from different SWM regions.

2.3. Classification methods

We included the DTI parameters of both reconstruction and measured
parameters from the ROI, tractography and connectivity and network
methods (i.e., FA, MD, RD, AxD, and QA, nQA, iso, RDI, network values
and number of connections between the brain regions). For each group
was converted to CSV files to enter MATLAB software for the classifica-
tion. Features extracted from each consisted of 504 features of the ROI
method, 576 features of the tractography method, and 702 features of the
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Figure 3. The process flow chart in our study.

Figure 4. A) The ROC curve followed by the quadratic kernel of SVM for HC-MCI classification. B) The ROC curve followed by the Gaussian kernel of SVM for AD-MCI
classification. C) The ROC curve followed by the linear kernel of SVM for AD-HC classification.
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connectivity and network method. After sorting the features, the vector
of features for each subject was estimated from the 1782 features. In
order to prepare the feature matrices as input to the SVM classification
model, intergroup matrices (HC-AD, HC-MCI, and MCI-AD) with specific
labels for each group were created.

All machine learning analyses were performed using MATLAB soft-
ware (R2014a). The steps can be divided into the following flow chart (as
shown in Figure 3).
4

After DTI data processing, feature extraction, and feature vector
creation, feature selection was performed.

2.3.1. Feature selection
In this neuroimaging research, the number of features per subject was

very high. So for identify the most relevant features (or parameters) for
the classification, we used a method based on fast correlation-based filter



Table 1. Demographics and clinical scores of the participants.

HC (n ¼ 24) MCI (n ¼ 24) AD (n ¼ 24) p-value

Mean (SD) Mean (SD) Mean (SD)

Age 75.3 (8.3) 76 (8.6) 76.4 (8.2) 0.89

Sex 11 M/13 F 12 M/12 F 16 M/8 F 0.3

Global CDR 0.021 (0.1) 0.58 (0.19) 1.1 (0.116) <0.001

FAQ Total Score 0.08 (0.4) 4.9 (6.9) 19.7 (6.2) <0.001

MMSE 29 (1.2) 26.7 (2) 20.1 (4.9) <0.001

Note. CDR: Commission on Dietetic Registration, FAQ: Functional Activities
Questionnaire, MMSE: minimal-mental simple examination, HC: Healthy control,
MCI: Mild cognitive impairment, AD: Alzheimer's disease, M: Male, F: Female.
P < 0.05 was considered statistically significant and the bold font indicates
statistical significance.

Table 2. The selective features for the SVM classifier.

MCI versus HC AD versus HC

SWM Regions Metrics SWM Regions Metrics

Occipital (L) PageRank-network Total assortativity-
network

Temporal (L) rdi02L Frontal (L) efficiency-network

Insula (L) Txy mean Occipital (R) betweenness-
network

Occipital (L) Txz mean Frontal (R) eigenvector-
network

Limbic (R) Tyz mean Frontal (R) PageRank-network

Occipital (R) RD Parietal (R) PageRank-network

Limbic (R) iso Frontal (R) eccentricity-
network

Frontal (R) rdi02L Parietal(R) efficiency-network

MCI versus AD Insula (L) Total-Connect

SWM Regions Metrics Occipital-Limbic
(L)

Connectivity

Total Small-worldness-
network

Temporal-Insula
(L)

Connectivity

Frontal (R) Cluster coefficient
network

Limbic (L) Txy mean

Occipital-Limbic
(L)

Connectivity Limbic (L) Tyz mean

Parietal-Temporal
(R)

Connectivity Temporal (L) RD

Insula (R) Region-FA Occipital (L) rdi08L

Temporal (L) Tyy mean Parietal (R) Tract length

Insula (R) Tyz mean Parietal (R) Txx mean

Temporal (L) Tzz mean Insula (L) Txy mean

Insula (L) nQA Limbic (L) Txy mean

Parietal (L) Tract length Insula (L) Tzz mean

Parietal (L) Tract number Occipital (L) Tzz mean

Insula (R) Tract-FA Limbic (L) AxD

Temporal (R) Txx mean Frontal (R) RD

Occipital (L) Txz mean Insula (R) iso

Insula (L) Tyz mean Limbic (L) iso

Insula (L) AxD

Occipital (L) Tract length

Note: FA: Fractional anisotropy; RD: Radial diffusivity; AD: Axial diffusivity; Txx,
Txy, Txz, Tyy, Tyz, Tzz: The main values of the diffusion matrix; nQA: Normal-
ized quantitative anisotropy; rdi: Restricted diffusion imaging; HC: Healthy
control; MCI: mild cognitive impairment; AD: Alzheimer's disease; L: left; R:
right.
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(FCBF), which is a feature selection method for high-dimensional data
[19].

After DTI processing, feature selection is performed using FCBF
methods and used in SVM for binary classification.

2.3.2. Learning and classification
After feature selection, we performed an internal 5-fold cross-

validation for the training data and applied the SVM algorithm using
binary classification between the three groups. Cross-validation is a
model validation technique used to ensure performance generalization; it
is also a re-sampling method used to assess a model if we have limited
data [20]. In total, we evaluated the Linear, Quadratic, Cubic, and
Gaussian kernels (fine, medium, coarse). Due to the better results in
Linear, Quadratic and Gaussian kernels and to reduce the complexity of
the study, we reported the results of these three kernels. Finally, we show
the Receiver operating characteristic (ROC) curve and the area under the
curve (AUC) for the best kernel in each classification (as shown in
Figure 4).

2.3.3. Evaluation
Once the SVM algorithm has been trained, the results including ac-

curacy, specificity, and sensitivity, which are defined as follows, are used
to evaluate the classification performance.

Sensitivity¼ TP
TPþ FN

Specificity¼ TN
FPþ TN

Accuracy¼ TPþ TN
TP þ TN þ FN þ FP

Generally in these equations, true positive (TP) refers to the number
of patients predicted correctly, false positive (FP) refers to the number of
healthy controls predicted incorrectly as patients, true negative (TN)
refers to the number of healthy controls predicted correctly, and false
negative (FN) refers to the number of patients predicted incorrectly as
healthy [21].

3. Result

3.1. Demographic and clinical characteristics

Demographics and the clinical scores of the participants are shown in
Table 1. There were no significant differences (P > 0.05) between the
three groups with respect to age and sex (see Table 1). Mini-mental state
examination (MMSE), Global clinical dementia rating (CDR), and Func-
tional Activities Questionnaire (FAQ) scores were significantly different
among the three groups. Statistical analysis of the basic information was
performed using SPSS 24.
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3.2. The selective features of superficial white matter

The FCBF method of feature selection showed 8 features for the
classification of MCI and HC, 25 features for the classification of AD and
HC, and 17 features for the classification of AD and MCI (Table 2).
Figure 5 shows the number of selective features of the different methods
of DTI.

3.3. The classification performance

The mean accuracy, sensitivity, and specificity were reported as the
results of this study. The linear kernel of SVMwas the best classifier, with
an accuracy of 95.8%, a sensitivity of 95.8%, and a specificity of 95.8%
between the AD and HC groups, followed by the quadratic kernel of SVM
with an accuracy of 83.3%, a sensitivity of 94.4%, and a specificity of
76.6% between the MCI and HC groups and the Gaussian kernel of SVM
with an accuracy of 83.3%, a sensitivity of 80.7%, and a specificity of
86.3% between the AD and MCI groups) as shown in Table 1). Figure 6
shows the comparison between the three kernels and finds the best kernel
in any pair classification (see Table 3).



Figure 5. The number of selective features of the different methods.

Figure 6. Comparison between the three kernels to find the best kernel in any pair classification.

Table 3. Classification performance for each pair group.

Pair classifier Correction Accuracy Sensitivity Specificity AUC

MCI-HC 70.3 83.3 94.4 76.6 .88

MCI-AD 87.5 83.3 80.7 86.3 .93

HC-AD 95.8 95.8 95.8 95.8 .99

Note. HC: Healthy control, MCI: mild cognitive impairment, AD: Alzheimer's
disease, AUC: Area Under the Curve.
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4. Discussion

There are various methods for analyzing DTI data, and each method
has its strengths and weaknesses. In this study, we used three methods,
namely ROI, tractography, connectivity and network analysis, to obtain
the characteristics of the superficial white matter [22].

The superficial white matter is one of the regions that has been found
to be highly vulnerable to many diseases, according to the retrogenesis
model [23]. For this reason, this area has been investigated in this study.
6

Several studies have been conducted to differentiate between in-
dividuals with AD andMCI and healthy individuals andmany researchers
are interested in finding methods to separate these three groups. In the
current study, we applied an automated method to classify subjects with
AD and MCI and HC subjects based on DTI features in the SWM.

It is important to note that the fiber architecture of the SWM (con-
taining multiple fiber populations called "crossing fibers") shows a more
complex order than the deep white matter (Figure 7). For this reason, it
seems necessary to use the QSDR reconstruction technique, because
model-free methods are more accurate in voxels containingmultiple fiber
populations compared with model-based methods [24]. For this purpose,
we used the QSDR technique along with the DTI reconstruction
technique.

Due to the development of intelligent systems in different sciences, a
machine learning system was developed for pair classification between
the three groups. To the best of our knowledge, this is the first study to
use a support vector machine to identify the features of the DTI tech-
niques in the SWM.

Our results from control versus MCI classification showed that the
quadratic kernel was the best kernel for this classification, with an



Figure 7. Example of the complex architecture of the SWM and crossing fiber (The SWM mask is shown in a white background).

Figure 8. An example of the connections between the superficial white matter regions provided by http://mkweb.bcgsc.ca/tableviewer/visualize/.
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accuracy of 83.3%. The discrimination between AD patients and elderly
controls showed 95.8% accuracy by the linear kernel. Connectivity pa-
rameters showed great importance on the selected features. An example
of these connections is shown in Figure 8.

Generally, investigation of brain network features can provide re-
searchers with information on most neurodegenerative diseases,
including AD and MCI. Recently, the study of network properties in
Alzheimer's disease has attracted the attention of several researchers.
Among these researchers are Daianu et al. [25], Seo et al. [26], Jalili et al.
7

[27], Sheng et al. [28] and Sulaimany et al. [29]. They believe that brain
network connectivity analysis provides a significant understanding of
how neural pathways break down in Alzheimer's disease. For example, as
reported in the study of Yongxia Zhou et al., the feature of the
small-world network in the brain cortex was able to distinguish between
Alzheimer's patients and MCI patients. In this study, the small-world
network, as one of the selective features in the superficial white mat-
ter, showed the ability to differentiate AD fromMCI, and it could be used
to explain the decline of memory and cognitive functions, consistent with

http://mkweb.bcgsc.ca/tableviewer/visualize/
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the findings of previous studies that loss of small-world network char-
acteristics are altered in AD patients [30, 31, 32].

Also, the PageRankmeasurement can highlight the brain regions with
a higher number of external links [33]. In our study, the PageRank in the
frontal and parietal regions was one of the top identified features for AD
diagnosis and it could play a more important role in the brain.

One of the most important findings of the study is the length and
number of the left parietal lobe tracts in the separation of AD from MCI.
Desikan et al.’s study mentioned the importance of parietal lobe injury as
a predictor of progression from MCI to AD [34]. The tractography results
of this study can confirm the conclusion of the previous study in the SWM
region. Because MCIs have a higher risk of developing AD than controls,
examining of parietal lobe may be a helpful indicator.

Also addition to tractography findings in AD versus MCI comparisons,
the disruption in connectivity between the temporal and parietal lobes
and also limbic and occipital lobes was observed in ADs. In other word,
short-range fibers connections in temporo-parieto can be an essential
finding in the separation of these two diseases. The temporo-parieto plays
a vital role in high-level human neural functions [35] that may be
damaged in Alzheimer's disease. Desikan et al. examined the atrophy of
this region in AD [34]. The findings of this study with a new technique
and using the features of the DTI method can be effective in separating
MCI from AD.A functional magnetic resonance imaging (fMRI) study
showed that insula is the key region of the human brain networks and the
most vulnerable region of AD [36]; the present study can confirm these
results in the superficial white matter because the features of insula such
as connectivity, iso, Tzz, and Txy are among the selected and main fea-
tures of Alzheimer's patients.

Most studies have reported that DTI values change between the AD
and MCI groups. Classification accuracy in this study between AD and
MCI was 83.3% by the Gaussian kernel, which was the best kernel for this
classification.

As a suggestion for future research, it will be interesting to include
other modalities and biomarkers in the multimodal study such as fMRI
and electroencephalogram (EEG), Positron emission tomography (PET),
and CSF proteins data with DTI data and can also be one of our future
goals.

5. Conclusion

In conclusion, we performed a method to automatically discriminate
between patients with AD andMCI and healthy controls. In this study, we
demonstrated that AD or MCI could be distinguished fromHC using SWM
region features through DTI. Thus, features obtained from the ROI,
tractography, and connectivity and network methods could help assist in
the diagnosis of AD and MCI. Finally, this study provides a background to
evaluate the other automated classification methods in this region. s.
5.1. Limitations

The sample size in machine learning is a crucial factor that impacts
the model performance. The study limitation is the small sample size of
the included subjects.
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